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Abstract—In the literature, different techniques have been
presented for the phase-noise analysis of free-running oscillator
circuits. In order to give some insight into the relationships
existing between them, an analytical comparison is carried out
in this paper between three different approaches. Two of them
are time-domain approaches, based on Floquet’s theory and
the impulse sensitivity function, respectively, and the third one
is the carrier modulation approach, in frequency domain. The
application of Floquet’s theory enables the calculation of periodic
sensitivity functions to the noise perturbations. Here, the possi-
bility to determine these functions through harmonic balance is
demonstrated. This allows applying the whole stochastic charac-
terization of phase noise, obtained from time-domain analysis,
to circuits simulated through harmonic balance. For illustration,
calculations in a cubic-nonlinearity oscillator are presented.

Index Terms—Harmonic-balance analysis, nonlinear oscillators,
phase noise.

I. INTRODUCTION

A FREE-RUNNING oscillator is described by a system of
nonlinear differential equations, which do not explicitly

depend on time. Due to this fact, the time origin or the phase
reference are undetermined. This is why perturbations of the
steady-state oscillation in the direction of the limit cycle can in-
crease arbitrarily, which gives rise to the phase noise. Taking this
into account, in [1]–[4], the differential equations of the noisy
oscillator are linearized and solved for the transversal and tan-
gential components of the perturbation to the limit cycle. The
tangential component provides the phase noise. In [1]–[4], this
component is obtained from the linearized time-periodic dif-
ferential equation, requiring the computation of the time-do-
main Jacobian matrix. A different time-domain approach is the
one based on the calculation of the impulse-sensitivity function
(ISF) [5], which gives a measure of the phase-excess response
of the linearized oscillator (about the steady-state regime) to a
given noise source. As in [1]–[4], the calculation of this function
also makes use of the tangential projection of the perturbation
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over the limit cycle. The authors propose an approximate ana-
lytical expression for the ISF, providing this projection [5]. To
distinguish the analytical expression of the ISF from its (more
accurate) numerical calculation, the former will be denoted here
as ISF based on tangential perturbation (TP-ISF). Unlike the cal-
culations in [1]–[4], it does not require the system time-domain
Jacobian matrix. The time-derivative of the oscillator steady-
state solution is used instead [5]. The TP-ISF has recently been
extended to the calculation of phase noise from commercial har-
monic balance [6]. When using harmonic balance, one of the
most common approaches is the one based on the computation
of the conversion matrix [7]–[10]. For small frequency offsets
from the carrier, [7] makes use of themixed-modeharmonic-bal-
ance formulation, to take into account the frequency modulation
of the carrier.

The initial objective of this study has been the development of
a technique enabling the application of the rigorous stochastic
characterization of phase noise, based on Floquet’s analysis, to
oscillators simulated through harmonic balance. The application
of harmonic balance in conjunction with Floquet’s analysis is
briefly described in [3]. The aim here has been to establish the
relationship with general and practical harmonic-balance for-
mulations [6], [7]. This initial objective has led us to an in-depth
analytical study of three different techniques, i.e., the one based
on Floquet’s analysis, the one based on the TP-ISF, and the
carrier-modulationapproach.Theanalyticalcomparisonhaspro-
vided clear relationships between these three approaches. These
relationships were thought to be of interest for the microwave
designerandarepresentedhere.Comparisonsbetweenthecarrier
modulation and conversion-matrix approach will not be carried
outsincethishasalreadybeendonein[7] inaveryrigorousway.

The paper is organized as follows. In Section I, the formu-
lation [1]–[4] is compared with the one based on the ISF [5].
In Section II, a frequency-domain approach to the differen-
tial equation, describing the perturbed oscillator [1], [2], is
presented, enabling a comparison with the carrier-modulation
analysis. Sensitivity functions to noise perturbations are cal-
culated, allowing the application of the phase-noise stochastic
characterization from Floquet’s analysis to circuits simulated
with harmonic balance. In Section III, the application of the
phase-noise analysis to a cubic nonlinearity oscillator allows
numerical calculations and accuracy comparisons. Note that,
due the nature of this paper, consisting of an analytical com-
parison between different techniques, some of the expressions
provided by their corresponding authors had to be rewritten for
the sake of clarity.

0018-9480/02$17.00 © 2002 IEEE
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II. COMPARISON OFTIME-DOMAIN ANALYSIS TECHNIQUES

The nonlinear differential equation ruling the free-running os-
cillator, in the presence of noise sources, is given by

(1a)

(1b)

with , , and , respectively, being the state variables, the
vector of nonlinear functions, and the vector of white-noise
sources, and , with to , being the colored noise
sources. The matrix has dimension and provides
the correlation of the white-noise sources. In [1]–[4], (1) is
linearized about the steady-state limit cycle, considering two
components, i.e., the stochastic time shift[since ]
and the transversal amplitude variation . After elimination
of second-order terms, the linearized equation is as follows [1],
[2]:

(2)

where is the steady-state solution,is the perturbed time,
is the Jacobian matrix of with respect to the

state variables, is the Jacobian matrix of with respect
to the white noise sources, and each [ ] is a column ma-
trix, containing the derivatives of with respect to the colored
noise source. The two unknowns of (2) are and . The
equation is linear in , but nonlinear in .

In [1], in order to solve (2) for and , the equation is
alternatively multiplied by a projection vector tangent to
the cycle and by a projection operator orthogonal to the cycle

. The resulting equation for the sto-
chastic time-shift is [1]

with (3)

The matrix exclusively depends on the system time-domain
Jacobian matrix and the projection elementsand . In [2],
a different resolution of (2) is presented, in which the equations
for and are uncoupled using the Floquet vector of
the adjoint linearized equations [2] associated with the Floquet
multiplier 1. The stochastic time shift is now given by

(4)

Note that (4) is a nonlinear equation in[in the same way
as (3)] since . Thus, (4) cannot be solved through di-
rect integration. However, the correlation spectrum of the phase
noise (obtained from [4]) only depends on the periodic vector

and the
scalars . These functions provide the
sensitivity of the oscillator phase to the noise sources (white or
colored). As an example, for a set of white noise sources, with
correlation matrix and a colored-noise source, with spec-
tral density , uncorrelated with the white-noise sources,
the phase-noise spectrum about the carrier frequencyis ap-
proached by [4]

(5)

where is the frequency offset from the carrier,
, and is the dc

component of . The extension to multiple white and
colored noise sources is immediate and has been carried out
in [4].

In [5], a different time-domain technique is proposed. It is
based on the calculation of the linear-time variant impulsive
response of the linearized oscillator (about its steady-state
regime). This impulsive response provides the phase shift of
the linearized oscillator versus the input current or voltage,
and is given by . The function is
called ISF [4]. For a current noise source (either white
or colored), the time shift [related to the phase shift through

] is calculated through the superposition inte-
gral . As will be shown,
this linear-time variant calculation is equivalent to the direct
integration of the time shift in (3).

The authors propose two main techniques for the ISF calcu-
lation. One is a numerical time-domain technique. The other is
an approximate analytical expression [5]. This approximate ex-
pression provides the tangential projection of the perturbation
over the limit cycle and, as already indicated, is referred to here
as the TP-ISF. For the case of a current noise generator, con-
nected at the circuit node, the analytical expression of the ISF
is given by

(6)

where is the equivalent capacitance at the particular node.
A dual formulation exists for the case of a voltage noise source
[5]. From (6), the time shift is given by

(7)

The time in the periodic term inside the integral should actu-
ally be shifted with respect to the noise source, i.e.,

Again, although the calculation of the time shiftbased on the
impulsive response is incorrect (due to the dependence
of the integrand on [3]), the statistical properties of the phase
shift only depend on the periodic function [5].

Let (3) and (7) be compared now. In case of an oscillator
circuit, with a current noise source in parallel with a ca-
pacitance (the case considered in [5]), the dominant term of the
derivative of with respect to the current noise source is

. Thus, and the analytical expression (7) is
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a particular case of (3), for a parallel oscillator topology, with a
current noise source. Note that the factor

in (7) agrees with the term

in (3) for only one noise source , with being the Ja-
cobian term affecting the particular (white or colored) noise
source. However, the first term of (3), providing the influence
of the amplitude perturbation on the phase shift, does not ap-
pear in (7). Thus, (7) is an approximation to (3).

In fact, the multiplication by the factor

provides an accurate projection over the cycle, but it does not
uncouple the phase and amplitude perturbations, as the multipli-
cation by the vector does. In (3), the phase shift is not solely
provided by the projection over the cycle of the noise-source
perturbation. There is a transient along which evolves and
this state-variable perturbation must also be projected over the
cycle. Due to limiting effects inherent to the nonlinearity of the
oscillator, the projection of will usually have smaller influ-
ence on the phase-shift value.

A problem in the ISF formulation comes from the fact that,
in the way that it has been presented in [5], it is restricted to
only two possible kinds of noise source models, i.e., a current
source in parallel with a capacitance or a voltage source in series
with an inductor. However, the designer is often provided with
models that do not match any of those two situations. In order to
avoid this restriction, a more general analytical expression (but
also neglecting the contribution of ) is proposed here, based
on the comparison between (3) and (7) as follows:

(8)

where is the column matrix containing the derivatives
of the nonlinear function with respect to the particular noise
source. As in the case of (4) and (5), the calculation of the phase-
noise spectrum only depends on the Fourier coefficients of the
former periodic function.

III. FREQUENCY-DOMAIN ANALYSIS TECHNIQUES

A. Perturbed-Oscillator Equations in the Frequency Domain

For the frequency-domain approach to (2), the stochastic time
shift can be written as

(9)

Assuming slowly varying perturbations, can be ex-
pressed in the form

(10)

with being slowly varying terms. In the following, and
under the assumption of slowly varying perturbations, only the
term with zero index will be considered. Using the
Fourier-series expansion of , it is then possible to write

the two first terms of (2) in the form

(11)
Replacing (11) into (2) and equating the terms that correspond to
the same harmonic order, the following expression is obtained:

...

...

.. .

...

...

...

. . .

. . .

. . .

...

...

...

...

...

...

...
...

...
...

...
...

...
...

...
...

...
...



2356 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 10, OCTOBER 2002

...

...

...

...
...

...
...

...
...

...
...

...
...

...
...

. . .

. . .

. . .

...

...

...

(12)

where is the number of state variables, is the number
of harmonic components, and is the vector, with dimen-
sion , containing the harmonic terms of the
slowly varying noise sources. Note thatwhite noise generators
plus colored generators have been taken into account. The
matrices agrees with the Toeplitz matrix [12] (or the
frequency-domain expression) of , and , with the
Toeplitz matrix of the Jacobian with respect to the noise sources,
including both and [ ]. The matrix containing the expo-
nential terms comes from the fact that all the harmonic
terms, except the noise sources, are referred to the temporal vari-

able y. The terms account for this time shift. For sim-
plicity, (12) will be rewritten in a compact way as

(13)
where and are the diagonal matrices in (12), with
respective dimension and

. On the other hand,
and . In an analogous way to (4), (13)

is nonlinear in .

B. Harmonic-Balance Formulation

The harmonic equation (13) can be written in a more compact
and useful way in terms of the harmonic-balance error function.
The general harmonic-balance formulation uses Jacobian ma-
trices of this error function. To obtain this equivalent formula-
tion, (1), in the absence of noise sources, can be rewritten by
introducing the auxiliary error function as
follows:

(14)

which, for the steady-state oscillation, can be translated to the
frequency domain as

(15)

Note that the matrix is the same as the one in (12). In the
presence of noise sources, the linear expansion of the harmonic-
balance equation around the steady state, eliminating the steady-
state terms, can be written as follows:

(16)

Assembling terms, the following relationships can be intro-
duced:

(17)

and (13) becomes

(18)
Due to the oscillator autonomy, the Jacobian is a sin-

gular matrix. Let the vector belong to the kernel of the ad-
joint matrix . This vector can be chosen so as its adjoint
vector fulfills . Since there is one degree of
freedom in , it can also be imposed, i.e., . The
system (18) can then be uncoupled through its left-hand-side
multiplication by the vector (providing a system in ) or
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by the auxiliary matrix (pro-
viding, together with , a system in ). The
left-hand-side multiplication of (13) by gives rise to

(19)

where the normalization has been taken
into account. This equation is equivalent to (4).

In case of a general harmonic balance formulation (with a typ-
ically smaller number [11] of state variables and linear matrices
of higher order in ), the expression for is also given
by (19), as shown in the Appendix. Due to the relationship be-
tween and in (9), (19) is, in fact, a nonlinear equation
in , in agreement with (4). Thus, a nonlinear resolution
of (19) would be required to determine for a given re-
alization of . However, the objective is the calculation of
the phase-noise spectral density [7] in terms of the spectral den-
sities of the noise sources. The multiplication by the complex
conjugate of the coefficient affecting then makes the de-
pendence on vanish in the common case of uncorrelated noise
sources. Equation (19) shows the close similarity between the
time-domain calculation and the carrier-modulation approach
[7]. The only difference between (19) and [7] is the actual res-
olution of the perturbed-oscillator equation. In the mixed-mode
approach [7], the singularity of the harmonic-balance equations
is removed by arbitrarily imposing for the
harmonic component of one of the variables. In (19), the
condition has been used. It can easily be shown
that the result, in terms of , is exactly the same, thus, (19)
is a different expression of the carrier modulation approach.

Comparison in now carried out with the phase-noise calcula-
tion in [8]. In [8], the perturbed solution isa priori expanded
in the sidebands , as in the conversion-matrix ap-
proach. Since the sidebands are prefixed, the Jacobian matrix

is no longer singular. The authors use the
vector , but the purpose is not to eliminate the singular term

, but to solve the numerical problems arising in the conver-
sion-matrix technique for small values of the frequency offset

. They perform a Taylor-series development of first order of
the Jacobian matrix in and employ an
eigenvalue and eigenvector calculation (involving) for over-
coming the matrix-inversion problem near the carrier.

IV. SENSITIVITY FUNCTIONS TONOISEPERTURBATIONS

From the time-domain equation (4), and taking (9) into ac-
count, it is possible to write

(20)

where the introduced terms and were already de-
fined in Section I. To express (20) in the frequency domain, it is

necessary to make use of the Toeplitz matrices [12] associated
to and , respectively, called and . The
following expression is obtained:

(21)

where is a column matrix, containing the harmonic
terms of the expansion (10), is an harmonic vector, con-
taining the white-noise sources, and refers to each of the
colored sources. If only the zero-index term is considered in

, (21) simplifies to

(22)

where and , respectively, contain the harmonic terms
of the periodic functions and in suitable order. To
compare (22) with (19), the latter equation can be decomposed
according to

(23)

where refers to the white-noise sources and refers to
each of the colored sources. Now comparing (23) with (22)

with (24)

where and
. The term refers to the harmonic af-

fecting the white noise source(with ) and
refers to the harmonicaffecting the colored noise source. As-
sembling the harmonic terms that refer to the same white noise
source, it is possible to obtain the following time-domain ma-
trix:

(25)

and for the terms referring to the colored noise sources

(26)

The following relationships are then fulfilled:

with

with (27)
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These periodic coefficients provide the oscillator phase sensi-
tivity to the noise sources. They are used in [1]–[4] for the sto-
chastic characterization of the phase-noise spectrum. This spec-
trum [1]–[4] depends on the constant term, referring to the white
noise sources
and the dc terms , whose calculation is straightforward from
the equivalencies (27).

Sensitivity functions (25) and (26) enable the application of
all the stochastic characterization of phase noise, carried out
in [4] to oscillators simulated through harmonic balance. This
analysis is very general, enabling the calculation of different
limiting forms of the noisy oscillator spectrum, for different
frequency ranges of interest. In the expressions provided
in [4], it is possible to take into account a realistic model
of the noise. In [2], the noise is modeled with an
infinite sum of autocorrelation spectra of Ornstein–Uhlen-
beck processes, which are statistically independent and have
damping rates ranging from zero to infinite. For damping
rate tending to zero, the correlation time of the process tends
to infinite. According to [13], the singularity of the spectral
density at arises as a result of the actual nonstationary
nature of this stochastic process. In order to avoid the non-
physical situation, a cutoff frequency is introduced in
[4]. The expression modeling the noise [4, eq. (66)] is

. The noise
then behaves as a stationary process. This cutoff frequency can
be related to the finite measurement timeas [13].
The frequency will typically be very small. The variance
of the time deviation is then approached (see [4, eq. (59)])
by . For
the calculation of the oscillator spectrum due to phase noise, the
Fourier transform of the autocovariance function of
is then determined [4] through approximating series expansions
[14]. Expressions (25) and (26) make this accurate spectrum
calculation applicable from the harmonic-balance simulation of
the oscillator circuit. This is done by combining (25) and (26)
with the expression provided in [4] for the oscillator spectrum,
which is exclusively due to phase noise. ForGaussian
noise sources, uncorrelated with each other and with the
white-noise sources, the spectrum, at each harmonic, is given
by

(28a)

(28b)

with and being the
spectral density of the colored noise source , with to

. Reference [2] provides the asymptotic expression of the os-
cillator phase-noise spectrum for offset frequencies
(see [2, eq. (141)]), and this expression is found to be indepen-
dent of the measurement time. The expression coincides with
(28b) and with the phase-noise spectrum obtained through the
carrier-modulation approach in [7].

(a)

(b)

Fig. 1. Schematic of the cubic nonlinearity oscillator. The parameters
of the nonlinear element area = �0:037 A/V, m = 0:01 A/V , and
b = 0:021 A/V . The values of the circuit elements areR = 45:5871 
,
L = 10 nH, andC = 2:0651 pF. The free-running oscillation frequency is
! = 2�10 s . (a) Inclusion of a current noise source. (b) Inclusion of a
voltage noise source.

As can be gathered from (28), the minimization of the dc
value of the sensitivity functions minimizes the up-conver-
sion of noise. On the other hand, the minimization of
minimizes the influence of white noise. The use of noise-sensi-
tivity functions has opened new possibilities for low phase-noise
oscillator design [5]–[15]. In [15], for instance, some design de-
cisions for ring oscillators (the type of implementation and the
number of stages) are taken in terms of the rms and dc values of
the ISF. The phase-noise reduction is verified in the experiment.

V. NUMERICAL APPLICATIONS

The phase noise of the cubic nonlinearity oscillator of Fig. 1
has been calculated using the three different techniques that
were analytically compared in the previous sections. The param-
eters of the nonlinearity are A/V, A/V ,
and A/V . The values of the circuit elements are

, nH, and pF. The free-run-
ning oscillation frequency is s . Two different
noise models have been considered, i.e., one with a current noise
source, in parallel with the nonlinearity [see Fig. 1(a)], and the
other with a voltage noise source in series with the nonlinearity
[see Fig. 1(b)]. The first model does not provide up-conversion
of noise [4].

For a white-noise current source , in parallel across the
nonlinearity, the perturbed nonlinear differential equation is
given by [see (2)]

with (29)
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(a)

(b)

Fig. 2. Cubic-nonlinearity oscillator. Comparison betweenc (t) andc (t),
calculated through Floquet’s theory and through the frequency-domain
technique (diamonds), and the ISF, based on tangential perturbation. The
calculation has been carried out with state variables normalized to their
maximum value. The waveformv(t) is also superimposed. (a) Voltage noise
source. (b) Current noise source.

Applying (4), the time derivative of the stochastic time shift
is given by , where stands
for the second component of the vector . Thus, the sensi-
tivity to noise is given by the time-varying coefficient

. In Fig. 2(a), is compared with the TP-ISF,
calculated from (5). The good agreement shows that, in this
case, the amplitude-dependent term, neglected in the TP-ISF
calculation, has a minor influence on the system response. The
result from harmonic balance [obtained through
(25)] has also been superimposed (with diamonds) and is over-
lapped with . The approximately zero average value of
these two calculations and the ISF indicates that the parallel os-
cillator, with a parallel current noise source, has no phase noise
due to the noise.

Now a noise voltage source , connected in series with
the nonlinearity, is going to be considered. Application of the

TABLE I
CUBIC NONLINEARITY OSCILLATOR WITH VOLTAGE NOISE SOURCE.

COMPARISONS OFPHASE-NOISE SENSITIVITIES

tangential ISF formulation, in its present form [5], would be im-
possible. This source location requires the derivative of the non-
linearity with respect to the noise source (instead of the factor

or ). Thus, the factor to be used in (8) is
, which depends on the oscil-

lator steady state. Fig. 2(b) shows the comparison between the
results provided by (4) and (8). There is still a very good agree-
ment. The calculation from harmonic balance (26)
has been superimposed and is again overlapped with.

In Table I, numerical comparisons are presented of the sen-
sitivity to noise provided by each of the two time-domain tech-
niques and the one provided by the frequency-domain expres-
sion (15).

VI. CONCLUSIONS

An analytical comparison between different phase-noise
analysis methods has been carried here with the aim to clarify
the relationships existing between them. A frequency-do-
main approach to the perturbed differential equation of the
free-running oscillation has enabled showing the excellent
agreement between the phase-noise calculation, based on
Floquet’s analysis, and the carrier-modulation approach. The
approximate analytic calculation of the ISF, based on TP-ISF,
has good qualitative agreement with the two former techniques.
The principles and formulation of the TP-ISF technique are
close to those of the Floquet’s analysis and this formulation
has the advantage of not requiring the Jacobian matrix of the
nonlinear-differential equation, which simplifies its application.
However, in the phase and amplitude definition that is used, the
amplitude fluctuations affect the phase fluctuations, and this
is not taken into account, which leads to slightly less accurate
results. Comparisons with the numerical and more accurate
calculation of the ISF have not been carried out. The possibility
to apply, through standard harmonic balance, the stochastic
characterization of phase noise, based on Floquet’s analysis,
has also been shown. In addition to these analytical demon-
strations, some numerical calculations, in a cubic-nonlinearity
oscillator, have been presented.
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APPENDIX

For a free-running oscillator, the equation can be written
(in a very general way)

(A.1)

where is the vector of nonlinear elements, is the vector
of bias generators, and and are linear matrices,
with respective orders and . These matrix
orders are generally different from those in (15). In (A.1), fewer
state variables are used [11] since the time derivatives, which,
in (15), form part of the state variable set, become powers of

in the standard equation (A.1). Considering noise generators
, the perturbed harmonic-balance system can be written (in

a very general way) [13]

(A.2)

where is the derivation operator. Only first-order terms in the
noise-source contributions have been considered. As in (12), the
matrix containing the exponential terms is due to the
phase shift between the temporal variableused in the Fourier
series expansions of and and the time in the noise
source. Note that the inclusion of the term would
mean considering second-order effects in the perturbation equa-
tion [due to the smallness of ], thus, this term is neglected.
Assembling terms in (A.2), it is possible to write

(A.3)

where is a matrix operator performing derivatives
with respect to the variable. Thus, the perturbed harmonic-
balance equation becomes

(A.4)

Now the kernel of is calculated. Imposing the nor-
malization condition , and solving for
fulfilling , the left-hand-side multi-
plication of (A.4) by provides the same expression (19).
Note that (A.4) must be fulfilled for all the possible (which
has an undetermined component), and, in particular, for the one
fulfilling . This simplifies the calcula-
tion and confirms the validity of (19) for a general harmonic-bal-
ance formulation. At the time of determining the amplitude per-
turbation (and from it, the amplitude noise), a suitable approxi-
mation of the operator should be used. Due to the
slow variations of , compared to the other terms of (A.4), the
influence of will be negligible in most cases.
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