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Analytical Comparison Between Time- and
Frequency-Domain Techniques for
Phase-Noise Analysis
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Abstract—In the literature, different techniques have been over the limit cycle. The authors propose an approximate ana-
presented for the phase-noise analysis of free-running oscillator |ytical expression for the ISF, providing this projection [5]. To
circuits. In order to give some insight into the relationships istinguish the analytical expression of the ISF from its (more
existing between them, an analytical comparison is carried out ¢ ical calculation. the f il be d ted h
in this paper between three different approaches. Two of them accurate) numerical ca gu ation, e_ormerw' e eho ednhere
are time-domain approaches, based on Floguet's theory and as ISF based on tangentlal perturbatlon (TP-'SF) Unlike the cal-
the impulse sensitivity function, respectively, and the third one culations in [1]-[4], it does not require the system time-domain
is the carrier modulation approach, in frequency domain. The = Jacobian matrix. The time-derivative of the oscillator steady-
application of Floquet’s theory enables the calculation of periodic state solution is used instead [5]. The TP-ISF has recently been

sensitivity functions to the noise perturbations. Here, the possi- tended to th lculati foh ise f ial h
bility to determine these functions through harmonic balance is extenaed to the calculation of phase noise from commercial har-

demonstrated. This allows applying the whole stochastic charac- Monic balance [6]. When using harmonic balance, one of the
terization of phase noise, obtained from time-domain analysis, most common approaches is the one based on the computation
to circuits simulated through harmonic balance. For illustration,  of the conversion matrix [7]-[10]. For small frequency offsets
calculations in a cubic-nonlinearity oscillator are presented. from the carrier, [7] makes use of thexed-modéarmonic-bal-
Index Terms—Harmonic-balance analysis, nonlinear oscillators, ance formulation, to take into account the frequency modulation
phase noise. of the carrier.
The initial objective of this study has been the development of
a technique enabling the application of the rigorous stochastic
characterization of phase noise, based on Floquet’s analysis, to
A FREE-RUNNING oscillator is described by a system ofscillators simulated through harmonic balance. The application
nonlinear differential equations, which do not explicitlyof harmonic balance in conjunction with Floguet's analysis is
depend on time. Due to this fact, the time origin or the phasgiefly described in [3]. The aim here has been to establish the
reference are undetermined. This is why perturbations of thQationship with general and practical harmonic-balance for-
steady-state oscillation in the direction of the limit cycle can innylations [6], [7]- This initial objective has led us to an in-depth
crease arbitrarily, which gives rise to the phase noise. Taking thiga|ytical study of three different techniques, i.e., the one based
into account, in [1]-[4], the differential equations of the noisy, Floquet's analysis, the one based on the TP-ISF, and the
oscillator are linearized and solved for the transversal and t@yrier-modulation approach. The analytical comparison has pro-
gential components of the perturbation to the limit cycle. Thgged clear relationships between these three approaches. These
tangential component provides the phase noise. In [1]-{4], thi§ationships were thought to be of interest for the microwave
component is obtained from the linearized time-periodic difjesignerand are presented here. Comparisons betweenthe carrier
ferential equation, requiring the computation of the time-donodulation and conversion-matrix approach will not be carried
main Jacobian matrix. A different time-domain approach is th§,t sincethis hasalreadybeendonein[7]inaveryrigorousway.
one based on the calculation of the impulse-sensitivity functionpe paper is organized as follows. In Section I, the formu-
(ISF) [5], which gives a measure of the phase-excess respopgfn [1]-[4] is compared with the one based on the ISF [5].
of the linearized oscillator (about the steady-state regime) Q2 section I, a frequency-domain approach to the differen-
given noise source. As in [1]-[4], the calculation of this functiogg) equation, describing the perturbed oscillator [1], [2], is
also makes use of the tangential projection of the perturbatiﬁﬂasemed, enabling a comparison with the carrier-modulation
analysis. Sensitivity functions to noise perturbations are cal-
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ll. COMPARISON OFTIME-DOMAIN ANALYSIS TECHNIQUES €1 (#) = [cu1(t) -+ cws(t)] = v (H)[9.(T,(¢))] and the

w

. = =T V(7 1 1
The nonlinear differential equation ruling the free-running og_cala!trgc_?(t)f " U1 (t).l[lgit(xo(ﬁ))]' Ihiﬁe functions prowdeme
cillator, in the presence of noise sources, is given by sensitivity of the oscillator phase to the noise sources (white or

colored). As an example, for a set of white noise sources, with

z :7(@7 E v, e, fym)7 T e R";, feR™ correlation matrixI'] and a colored-noise source, with spec-
tral densityS( f,.), uncorrelated with the white-noise sources,
EER v, ...,"mER (1a) the phase-noise spectrum about the carrier frequéncy ap-
roached by [4
(&) =Tyt — 1) a P Y
—_ _ L, CW 2 [ vo(2 SF(fm)
with z, f, and¢, respectively, being the state variables, the Se(fm) = 15 2 + 15 |Cw| T2 ®)

vector of nonlinear functions, and the vector of white-noise . .
sources, andy;, with i — 1 to m, being the colored noise WNere fm 1S theT_frTequeni:y offset fromo the carrier,
sources. The matrifl] has dimensions x s and provides CW = (1/T) Jy €u(D)lTcu(t)dt, and C7 is the dc

the correlation of the white-noise sources. In [1]-[4], (1) i§°mPonent ofc.(¢). The extension to multiple white and
linearized about the steady-state limit cycle, considering tf!ored noise sources is immediate and has been carried out
components, i.e., the stochastic time shisincez = z(t+6)] " [4]. ) _ ) ) ) _
and the transversal amplitude variatiovF. After elimination !N [5], @ different time-domain technique is proposed. It is

of second-order terms, the linearized equation is as follows [PRS€d on the calculation of the linear-time variant impulsive
[2]: response of the linearized oscillator (about its steady-state

) B regime). This impulsive response provides the phase shift of
Z ()8 + AT (y) = [Df(fo(y))}Af(y) + [gw (fo(y))}é’(t) the linearized oscillator versus the input current or voltage,
. and is given byh(t, 7) = T'(r)u(t — 7). The functionl is
o ‘ called ISF [4]. For a current noise sourég) (either white
+Z [gi (wo(y))}’w(t) @ or colored), the time shift [related to the phase shift through
] = ] $(t) = w,0(t)] is calculated through the superposition inte-
wherez, (t) is the steady-state solutionjs the perturbed time, gral 6(t) = (1/wo)ft [(w,7)i(r)dr. As will be shown
y=1t+46, [Df]is the Jacobian matrix of with respect to the this jinear-time variant calculation is equivalent to the direct
state variabledy,, ()] is the Jacobian matrix of with respect integration of the time shift in (3).
to the white noise sources and eachd;(y)] is a column ma-  The authors propose two main techniques for the ISF calcu-
trix, containing the derivatives of with respect to the colored |4tion, One is a numerical time-domain technique. The other is
noise source. The two unknowns of (2) ar&x andé. The  an approximate analytical expression [5]. This approximate ex-
equation is linear il\z, but nonlinear irg. B ~_ pression provides the tangential projection of the perturbation
In [1], in order to solve (2) fo and Az, the equation is gyer the limit cycle and, as already indicated, is referred to here
alternatively multiplied _by a projection vectar(t) tangent t0 55 the TP-ISF. For the case of a current noise geneiajpcon-
the cycle and by a projection operator orthogonal to the CyGligcted at the circuit nodg the analytical expression of the ISF
[P(t)] = [I] — n(t) - n(¢)*". The resulting equation for the sto-jg given by
chastic time-shift is [1]

_ 1 &,(7)
n(y)T |:g'w (%(y))} _ F(wo"_) = Wo 5 d ﬁ (6)
e(t) = [B(y)] Af(y) + |T/ (U)| S(t) J |-To(7_)|
Aly)T & o whereC; is the equivalent capacitance at the particular node
+ _/y [g;’(azo (y))} i (t), A dual formulation exists for the case of a voltage noise source
[z = [5]. From (6), the time shift is given by
- T (t) .
tha(t) = =2 3 _ Zoj(r) 1 .
with 7z(t) Eo(t)| ) 0(t) = [m |§ J(T)|2 a i(T)dr. 7

The matrix[53] exclusively depends on the system time-domain

) - T The time in the periodic term inside the integral should actu-
Jacobian matrix and the projection elememtand[P]. In [2], me ! period nst Integ u u

. : . . . ._ally be shifted with respect to the noise source, i.e.,
a different resolution of (2) is presented, in which the equatlonsy P

for AT andé(t) are uncoupled using the Floquet veatdi(t) of Toj(T+6)
the adjoint linearized equations [2] associated with the Floquet |§O(T + 6) |2

multiplier 1. The stochastic time shift is now given by Again, although the calculation of the time shifbased on the

; _r _ — o _ impulsive respons&(t, 7) is incorrect (due to the dependence
0(t) =71 (v) [9“’ (% (y))} ¢B+v1(H) Z [93(% (y))} %M ofthe integrand o E3]), )the statistical properties of the phase
= @) shift only depend on the periodic functidifw,7) [5].
Let (3) and (7) be compared now. In case of an oscillator
Note that (4) is a nonlinear equation énin the same way circuit, with a current noise sourcét) in parallel with a ca-

as (3)] sincey = ¢ 4+ 6. Thus, (4) cannot be solved through dipacitance (the case considered in [5]), the dominant term of the
rect integration. However, the correlation spectrum of the phaderivative ofAd; with respect to the current noise sou#¢s is
noise (obtained from [4]) only depends on the periodic vectdyC;. Thus,g(y) = 1/C; and the analytical expression (7) is
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a particular case of (3), for a parallel oscillator topology, with the two first terms of (2) in the form

current noise source. Note that the factor T/ ()8 = Z X ¥k Aw,elkeoy
Zoj(7)
- 2
C; |a:0(r)| _ Z Xk Aw, kot gikwot
in (7) agrees with the term ;
= T — - . .
n(y) [g(y)] Afl(y) _ Z (AX k(y)lkwo L+ AX k(y)) el kwot pikwot
7 0,(y)] K
in (3) for only one noise sourcét), with ¢(y) being the Ja- (11)

cobian term affecting the particular (white or colored) noisBeplacing (11)into (2) and equating the terms that correspond to
source. However, the first term of (3), providing the influencée same harmonic order, the followmg expressmn is obtained:
of the amplitude perturbation on the phase shift, does not apf —jNH XN
pear in (7). Thus, (7) is an approximation to (3).

In fact, the multiplication by the factor :

Eoj(t) JNH XN
EXGI

provides an accurate projection over the cycle, but it does nof
uncouple the phase and amplitude perturbations, as the multiplit
cation by the vectos ¥ does. In (3), the phase shift is not solely
provided by the projection over the cycle of the noise-source ) -
perturbation. There is a transient along whisfz evolves and JNHI | XV
this state-variable perturbation must also be projected over the —jNH q
cycle. Due to limiting effects inherent to the nonlinearity of the
oscillator, the projection oAz will usually have smaller influ-
ence on the phase-shift value.

A problem in the ISF formulation comes from the fact that,
in the way that it has been presented in [5], it is restricted to
only two possible kinds of noise source models, i.e., a current
source in parallel with a capacitance or a voltage source in series —jNH
with an inductor. However, the designer is often provided with
models that do not match any of those two situations. In order to
avoid this restriction, a more general analytical expression (but L jNH |
also neglecting the contribution &%) is proposed here, based _

: Aw,
—JNH X-NH

n

JNH

—NH A r NH 7
on the comparison between (3) and (7) as follows: AX, AXl
= T
Fi(wot) = Wy n(yz, [g(y)] (8) ' . .' .
|z, (y)] AXNH AXNH

where [¢(y)] is the column matrix containing the derivatives
of the nonlinear functiorf with respect to the particular noise : Wo F :
source. As inthe case of (4) and (5), the calculation of the phase- AX—NH AX—NH
noise spectrum only depends on the Fourier coefficients of the " "
former periodic function. : :

I1l. FREQUENCY-DOMAIN ANALYSIS TECHNIQUES I AXéVH ] I AX,JL\"H

A. Perturbed-Oscillator Equations in the Frequency Domain _ 8F1_NH 8F1_NH 8F1_NH 8F1_NH -

For the frequency-domain approach to (2), the stochastic time ax-NH = gxNA T gx-NH T gxNH
shift can be written as 1 1 n n

B Aw( ) : e : e : e :
b(t) = /0 o, W ©) OFNH  9FNH  gpNH  gFNH
Assuming slowly varying perturbations\w(t) can be ex- ox N oxXN oxy ! OXNH
pressed in the form - : . : . : . :
t) _ Z Awk(t)ejk“’ot (10) aFn—NH aFn—NH aFn—NH aFn—NH
. 8X1_NH aXf\’H 8X,7NH aerl\fH

with Aw,(t) being slowly varying terms. In the following, and

under the assumption of slowly varying perturbations, only the ' . : ‘
term with zero indexAw,(t) will be considered. Using the oFNH OFNH OFNH oFNH
Fourier-series expansion @, (t), it is then possible to write Lox N7 axXNF T ax; NP 9XMH
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[AXTYT able y. The termg—7*«-¢ account for this time shift. For sim-
plicity, (12) will be rewritten in a compact way as

AXNH ] Awo X +[jE]we AX+AX = [DFIAX +[G][e~ 5| E(#)
(13)
N : where[;j£] and[e—7*<-] are the diagonal matrices in (12), with
AX-NH respective dimension(2NH + 1) x n(2NH + 1) and(s +
" m)(2NH+1) x (s+m)(2N H+1). Onthe other handD F] =
[0F /60X ] and[G] = [0F /OE]. Inan analogous way to (4), (13)
A - is nonlinear inf.
XTL‘ -
- 8FfNH 8FfNH 8FfNH 8FfNH 1 B. Harmonic-Balance Formulation
aE, VH CopNE T OE; N o OENH The harmonic equation (13) can be written in a more compact
. . and useful way in terms of the harmonic-balance error function.
: . : : : The general harmonic-balance formulation uses Jacobian ma-
OFNH OFNH OFNH OFNH trices of this error function. To obtain this equivalent formula-
gE—NH OENH U gp~NH SENH tion, (1), in the absence of noise sources, can be rewritten by
' . ok . introducing the auxiliary error function(z): R* — R" as
+ : : : : fO”OWS:
QF-NH QF-NH QF-NH oF-NH _ P
aEfNH OENH aE;&\;{{ aEé\ffn hz)=z2—f(z)=0 (14)
: L : L : o : which, for the steady-state oscillation, can be translated to the
oFNH oFNH oFNH oFNH frequency domain as
| OB NH OENH OB NH OENH | H(X,, w,) = [jklweX, — F (X,) = 0. (15)
r-d NHw,60 -
¢ Note that the matrix;k] is the same as the one in (12). In the
presence of noise sources, the linear expansion of the harmonic-
iNHw,6 balance equation around the steady state, eliminating the steady-
¢ state terms, can be written as follows:
* — — — —
' AH = [jk|w,AX — [DF|AX + [jk]Aw. X,
e]NHwOG . aF
+ AY - — 6_jkw00 E
. oL 0[ ]
i e—iNHw,b | =0. (16)
FETNHE ()] Assembling terms, the following relationships can be intro-
duced:
' OH
NH 1k o — DI = — =[JH
ENF(b) [ik]w, — [DF] 0%, [JH]
. : (12) i OH
. VR = 50
E5+rn (t) i .
or OH
' OF |, OF |,
L BRI

and (13) becomes

wheren is the number of state variable® H is the number i . '

of harmonic components, arfid(t) is the vector, with dimen- ——| Aw,(t)+[JH],AX(t)+AX(t) = [G] [e*”““og}ﬁ(t).
sion(s +m)(2N H + 1), containing the harmonic terms of the “* lo (18)
slowly varying noise sources. Note thawhite noise generators Due to the oscillator autonomy, the Jacobjd] is a sin-
plus m colored generators have been taken into account. Th&lar matrix. Let the vector belo'n to the kernel of the ad-
matricegdF /5.X] agrees with the Toeplitz matrix [12] (or the Y I Tk ! g . .
frequency-domain expression) [@ ], and[F /IE], with the joint matn.x [J_}{r]o . T_hIS vector can Ibe choser? S0 as its adjoint
Toeplitz matrix of the Jacobian with respect to the noise sourc¥€ctor fulfills vV, -(0H /9w)|, = 1. Since th_erf is one degree of
including both(g,,] and [g;']. The matrix containing the expo- freedom inAX, it can also be imposed, i.é/,; -AX = 0. The
nential terms:~/*~-¢ comes from the fact that all the harmonicsystem (18) can then be uncoupled through its left-hand-side
terms, except the noise sources, are referred to the temporal vautidtiplication by the vectoV;r (providing a system in\w) or
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by the auxiliary matrix(Af] = [I] — (9H/0w)|, - VI’ (pro- necessary to make use of the Toeplitz matrices [12] associated
viding, together with’} - AX = 0, a system inAX). The 0% (y) andc] (y), respectively, callefl’'C,] and[I'C]]. The
left-hand-side multiplication of (13) by’ ; gives rise to following expression is obtained:
_ —jkwob | T
Aw,(t) =V [Q] [e*ﬂwoﬂ () (19) [Aw(®)] = wo[TCu] [e LEW ®)

where the normalizatiol ; - (9H /dw)|, = 1 has been taken TWo Z [TO;’} [C Moe} WEZ(t) (21)
into account. This equation is equivalent to (4). =1

In case of a general harmonic balance formulation (with a typhere [Aw(#)] is a column matrix, containing the harmonic
ically smaller number [11] of state variables and linear matricégrms of the expansion (10§, (¢) is an harmonic vector, con-
of higher order inw,), the expression foAw(t) is also given taining the white-noise sources, aEq (t) refers to each of the
by (19), as shown in the Appendix. Due to the relationship beolored sources. If only the zero-index term is considered in
tweenAw(t) andé(t) in (9), (19) is, in fact, a nonlinear equation[Aw( )1, (21) simplifies to
in Aw,(t), in agreement with (4). Thus, a nonlinear resoluuog B ihw,6] =
of (19) would be required to determinkw, (t) for a given re- wo(t) = woC [6 ]wEw(t)
alization of E(¢). However, the objective is the calculation of
the phase-noise spectral density [7] in terms of the spectral den- +w, Z C [ —Jkewot } EZ(t) (22)
sities of the noise sources. The multiplication by the complex v
conj;gate ofﬁthe cohefflmhent affectingj(t) th‘?n makesl thedde whereC,, andC.;, respectively, contain the harmonic terms
e e Sneo o B bt uncons, (1) nde () nsabl o T
time- doma|?1 calculation and the carrier- modulat)|10n a ﬁmpare (22) with (19), the latter equat|on can be decomposed

pproag ccordlng to

[7]. The only difference between (19) and [7] is the actual res-
olution of the perturbed-oscillator equation. In the mixed-mode Aw, (1) IV;F[G] [e—ikwoe}ﬁ(t)
approach [7], the singularity of the harmonic-balance equations
is removed by arbitrarily imposingmag(AX;) = 0 for the
harmonic component of one of the variables. In (19), the .
conditioan[JH] =0 has begn used. It can easily be shown + Z VIL[GZ] [e—jkw00:| B (t) (23)
that the result, in terms ahkw,, is exactly the same, thus, (19) , v

is a different expression of the carrier modulation approach.

Comparison in now carried out with the phase-noise calcul“é(her:e[f ﬁ] reftlars tg the white-noise sources 6{?] reff‘rsztg
tion in [8]. In [8], the perturbed solution ia priori expanded each of the colored sources. Now comparing (23) with (22)

VITGul[e ] But)

in the sideband$w, + w,,, as in the conversion-matrix ap- won =V] [Gw] =B,

proach. Since the sidebands are prefixed, the Jacobian matrix .

[JH(kw, + wm)] is no longer singular. The authors use the ~ w.C'; VG = w withi=1,...,m (24)
vectorV 1, but the purpose is not to eliminate the singular termhere[ BCNH ... BNH ... B-NH ... BNH] andB

[J H], but to solve the numerical problems arising in the conve(g- —NH ;NH] The termB’“ refers to the harmomga?-
sion-matrix technique for small values of the frequency offs

wm. They perform a Taylor-series development of first order ?Ctmg the Wh'te hoise sourge(with & = 1,...,s) andB

refers to the harmonik affecting the colored noise source‘\s-
sembling the harmonic terms that refer to the same white noise
source, it is possible to obtain the following time-domain ma-

the Jacobian matrif/ H (kw, + wy,)] In wi, and employ an
eigenvalue and eigenvector calculation (involving) for over-
coming the matrix-inversion problem near the carrier.

trix:
IV. SENSITIVITY FUNCTIONS TONOISE PERTURBATIONS [boi(t) - bus(t)]
From the time-domain equation (4), and taking (9) into ac- N N
count, it is possible to write l Z Bieteet .. Z Ble/teet| (25)
k=—NH k=—NH
T = z
Aw(t) =w,1 (y) [gw (o (y))k(t) and for the terms referring to the colored noise sources
m NH
O [97 (To(y))}%(t) Z Blehet i=1,... m.  (26)
i=1 —NH
_ i The foIIowmg relationships are then fulfilled:
=wol b (&) +wo Y & (W)ilD) (20) )
i=1 Cwi(t) = — bwi(t)7 with ¢ = 1, ..., 8
W

O

where the introduced tern®s,(y) andc; (y) were already de- "
fined in Section . To express (20) in the frequency domain, it is ¢ (t) = w_o b (1), withi =1,....m. @7)
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These periodic coefficients provide the oscillator phase sensi
tivity to the noise sources. They are used in [1]-[4] for the sto-
chastic characterization of the phase-noise spectrum. This speg R
trum [1]-[4] depends on the constant term, referring to the white i
noise source€'W = (1/7) [ eL(t)[[]e.(t) dt = BW/w?
and the dc term€’7;, whose calculation is straightforward from
the equivalencies (27). '
Sensitivity functions (25) and (26) enable the application of
all the stochastic characterization of phase noise, carried ol l
in [4] to oscillators simulated through harmonic balance. This$ R T C L v ing (9= av - by

2

o L iw AY igg (v) =av +my +ov7

3

analysis is very general, enabling the calculation of different
limiting forms of the noisy oscillator spectrum, for different

frequency ranges of interest. In the expressions provided (b)
in [4], itis pQSSIbIe to take into a_CCO_Unt a rea“St'C_ modetig 1. Schematic of the cubic nonlinearity oscillator. The parameters
of the 1/ f noise. In [2], thel/f noise is modeled with an of the nonlinear element are = —0.037 AV, m = 0.01 A/VZ, and

infinite sum of autocorrelation spectra of Ornstein—Uhler- = qgiLAgY]Z-CThe \z/%llsje? g‘;:”}'?hg';fé‘g ﬁjﬁmﬁgtisﬁ;oﬁrgﬁe;éy "
. I . = s = 2.060 . -

beck processes, Wh'Fh are Stat'St'Ca"Y mgependent an‘?' have 9100 st (a) Inclusion of a current noise source. (b) Inclusion of a
damping ratesy ranging from zero to infinite. For dampingvoltage noise source.
rate tending to zero, the correlation time of the process tends
to infinite. According to [13], the singularity of the spectral o
density atf = 0 arises as a result of the actual nonstationar As can be ga’Fr_\e_red fror_n (%8)’ th_e_m_|n|m|zat|on of the dc
nature of this stochastic process. In order to avoid the no Alue ofthe sgnsnlwtyfunctloﬂfl (t) m|n|m|zgs'th¢up—conver—
physical situation, a cutoff frequenc§.;, is introduced in sion Ofl/f noise. On the othe_r hanc_i, the m|n|m|zat|0r_1m :
[4]. The expression modeling the/f noise [4, eq. (66)] is minimizes the influence of white noise. The use of noise-sensi-

Sy _ h ' ; tivity functions has opened new possibilities for low phase-noise
Sy(f) = 1/|f|=4/(2n f) axctan( fun/ (27 1)). Thel/ f noise illator design [5]-[15]. In [15], for instance, some design de-
then behaves as a stationary process. This cutoff frequency a3h S9N [oF ) ' . ’ . 9
be related to the finite measurement tifes fum — 1 /7 [13] cisions for ring oscillators (the type of implementation and the
The frequencyf.., will typically be very small. The variance NUmber of stages) are taken in terms of the rms and dc values of
of the time deviz;iﬂorv(t) is then approached (see [4, eq. (59)]She ISF. The phase-noise reduction is verified in the experiment.
by 02(1) = 2|CS? [, S, ()L = &2°/) /(4 %) df. For
the calculation of the oscillator spectrum due to phase noise, the
Fourier transform of the autocovariance functioeft +6(t)) _ . . _ . _
is then determined [4] through approximating series expansionsThe phase noise of the cubic nonlinearity oscillator of Fig. 1
[14]. Expressions (25) and (26) make this accurate spectrin@s been calculated using the three different techniques that
calculation applicable from the harmonic-balance simulation wfere analytically compared in the previous sections. The param-
the oscillator circuit. This is done by combining (25) and (263ters of the nonlinearity are= —0.037 A/V, m = 0.01 A/V?2,
with the expression provided in [4] for the oscillator spectrunandb = 0.021 A/V3. The values of the circuit elements are
which is exclusively due to phase noise. FerGaussianl/f R =45.5871 Q, L = 10nH, andC = 2.0651 pF. The free-run-
noise sources, uncorrelated with each other and withsthening oscillation frequency is,, = 2710° s~*. Two different
white-noise sources, the spectrum, at each harmigngcgiven noise models have been considered, i.e., one with a current noise

V. NUMERICAL APPLICATIONS

by source, in parallel with the nonlinearity [see Fig. 1(a)], and the
( k m ) other with a voltage noise source in series with the nonlinearity
2 <BW+ Z |B$i| Syi(0)> [see Fig. 1(b)]. The first model does not provide up-conversion
. =t , of 1/f noise [4].
! <BW+ 3 |Bf/i|2 Sﬁ,i(O)) T r2 For a white-noise current sourég(t), in parallel across the
Sk(fim) = 167 £ 0 i=1 (28a) nonlinearity, the perturbed nonlinear differential equation is
m given by [see (2)]
.2 m
4% <BW+2 B2 |* S5i(fm) ig d;Lo d?'ﬁr
L fe>o0 (28) w19 ane
with BW = (1/T) [ b (£)[T], (£) dt andS.;( f..) being the dy dy
spectral density of the colored noise soufgl), with ¢ = 1 to 1
m. Reference [2] provides the asymptotic expression of the os- 0 I Aip,
cillator phase-noise spectr_um for offs_et fr_equen(ﬂgs>> f_min ] p  2m 3002 (y) [ Aw }
(see [2, eq. (141)]), and this expression is found to be indepen- T "o oY (y) — —c
dent of the measurement tirfie The expression coincides with 0
(28b) and with the phase-noise spectrum obtained through the +| =1 |- iw(®), withp = a + i (29)
carrier-modulation approach in [7]. el R
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4 T T T : T y T T T TABLE |
CuBIC NONLINEARITY OSCILLATOR WITH VOLTAGE NOISE SOQURCE.
COMPARISONS OFPHASE-NOISE SENSITIVITIES

Floquet analysis: ISF Harmonic-balance:

& 2 o r bu(t). b
5 aCu(1), @ocy() 0ol (@) W(0), by(1)
o
=

L Noise close DC term: DC term: DC term:

o
38
= to DC 1.9796 10° rad/(v-s) | 1.4614 10° rad/(v-s) | 1.9804 10° rad/(v-s)
P
= Noise close First harmonic: First harmonic: First harmonic:

H
o

to tirst harmonic {3.6396 10° rad/(v-s) |2.8859 107 rad/(v-s) | 3.6466 10° rad/(v-s)

Noise close Second harmonic: | Second harmonic: | Second harmonic:

Floguet Analysis

Culth B, {0/, to second harmon| 1.5927 10° rad/(v-s) | 1.3815 10° rad/(v-s) | 1.5694 10° rad/(v-s)

_3 s t s i . L L :

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 Noise close Third harmonic: Third harmonic: Third harmonic:
Time (ns)

@)

to third harmonic | 2.2838 10° rad/(v-s) | 1.6673 10° rad/(v-s) | 2.2734 10 rad/(v-s)

tangential ISF formulation, in its present form [5], would be im-
possible. This source location requires the derivative of the non-
linearity with respect to the noise source (instead of the factor
1/C or 1/L). Thus, the factor to be used in (8)géuv,(t)) =
(1/C)(a + 2mu,(t) + 3bv,(t)?), which depends on the oscil-
lator steady state. Fig. 2(b) shows the comparison between the
results provided by (4) and (8). There is still a very good agree-
ment. The calculation from harmonic balari¢¢w, )b.,(t) (26)
has been superimposed and is again overlappedayt).

In Table I, numerical comparisons are presented of the sen-
\ ] sitivity to noise provided by each of the two time-domain tech-
- niques and the one provided by the frequency-domain expres-
sion (15).

Floquet Analysis

P o ft).b (o,

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 23
Time (ns)

(b) . . . .
_ _ o _ , An analytical comparison between different phase-noise
Fig. 2. Cubic-nonlinearity oscillator. Comparison betweer{t) andc.,(t),

calculated through Floquet's theory and through the frequency-domﬁll’]alySIS methqu ha$ b_een carried here with the aim to Cla”fy
technique (diamonds), and the ISF, based on tangential perturbation. The relationships existing between them. A frequency-do-
calculation has been carried out with state variables normalized to thgifain approach to the perturbed differential equation of the
210?;;'(:”;"’?;)Vgll:’reré:thﬁo‘gzvgﬂt"g) Is also superimposed. (a) Voltage noisegaq_rnning oscillation has enabled showing the excellent

agreement between the phase-noise calculation, based on

Floquet's analysis, and the carrier-modulation approach. The
Applying (4), the time derivative of the stochastic time shifypproximate analytic calculation of the ISF, based on TP-ISF,
is given by6(t) = —uvi5(y)(1/C)iw(t), wherevly(y) stands has good qualitative agreement with the two former techniques.
for the second component of the vectgi(y). Thus, the sensi- The principles and formulation of the TP-ISF technique are
tivity to noise is given by the time-varying coefficieat(t) = close to those of the Floquet's analysis and this formulation
—vi5(y)(1/C). InFig. 2(a) ., (t) is compared with the TP-ISF, has the advantage of not requiring the Jacobian matrix of the
calculated from (5). The good agreement shows that, in thignlinear-differential equation, which simplifies its application.
case, the amplitude-dependent term, neglected in the TP-ISgwever, in the phase and amplitude definition that is used, the
calculation, has a minor influence on the system response. Hifiplitude fluctuations affect the phase fluctuations, and this
result from harmonic balancél /w,)b.,(¢) [obtained through s not taken into account, which leads to slightly less accurate
(25)] has also been superimposed (with diamonds) and is ov@fsults. Comparisons with the numerical and more accurate
lapped withc,,(t). The approximately zero average value ofalculation of the ISF have not been carried out. The possibility
these two calculations and the ISF indicates that the parallel @-apply, through standard harmonic balance, the stochastic
cillator, with a parallel current noise source, has no phase nO%racterization of phase noise, based on F|0quet's ana|ysiS,
due to thel/f noise. has also been shown. In addition to these analytical demon-

Now a noise voltage souragg,(t), connected in series with strations, some numerical calculations, in a cubic-nonlinearity

the nonlinearity, is going to be considered. Application of thescillator, have been presented.

VI. CONCLUSIONS
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APPENDIX where[D(X,, w,)] is a matrix operator performing derivatives
with respect to they variable. Thus, the perturbed harmonic-
For a free-running oscillator, th B equation can be written balance equation becomes
(in a very general way)

H = [Aw)|X + BN (X) + (@B =T (ap THAEE

gf] Aw, + [D(Xo, w)} AX

e [e*fkwoﬂﬁ(t). (A.4)
whereN is the vector of nonlinear elementg, is the vector
of bias generators, andl], [B] and [G,] are linear matrices,
with respective orders, x 1., L, x ,, andl, x l. These matrix Now the kernelV'; of [JH]+ is calculated. Imposing the nor-
orders are generally different from those in (15). In (A.1), fewenalization COﬂdlthﬂV 1 [0H /dw,] = 1, and solving forAX

state variables are used [11] since the time derivatives, whiétlfilling V' ; [D(Xo, wo)]AY = 0, the left-hand-side muilti-

in (15), form part of the state variable set, become powers glication of (A.4) byV;r provides the same expression (19).
Jjw inthe standard equation (A.1). Considering noise generatiiste that (A.4) must be fulfilled for all the possibdeX (which

E(t), the perturbed harmonic-balance system can be written fias an undetermined component), and, in particular, for the one

a very general way) [13] fulfilling V3 [D(X,, w.)]AX = 0. This simplifies the calcula-
tion and confirms the validity of (19) for a general harmonic-bal-
ance formulation. At the time of determining the amplitude per-

{[A(wo)] + [B( }A X( turbation (and from it, the amplitude noise), a suitable approxi-
X mation of the operatdiD(.X ,, w,)] should be used. Due to the

9A slow variations o_ﬁY, compared to the other terms of (A.4), the
+ { {%} X, + { } No} Aw, (t influence of[D(X,, w,)]AX will be negligible in most cases.
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